УДК 658.786

Белоусова П.О. магистрант

Уфимский государственный
авиационный технический
университет

Россия, г. Уфа.

Куликов Г.Г. профессор

Уфимский государственный
авиационный технический
университет

Россия, г. Уфа.

Belousova P.O. master student

Ufa State Aviation

Technical University

Russia, Ufa.

Kulikov G.G. Professor

Ufa State Aviation

Technical University

Russia, Ufa.
ИНФОРМАЦИОННО-АНАЛИТИЧЕСКАЯ ПОДДЕРЖКА ПРОЦЕССА ОЦЕНКИ КРЕДИТНЫХ РИСКОВ

INFORMATIONAL AND ANALYTICAL SUPPORT FOR THE CREDIT RISK ASSESSMENT PROCESS

Аннотация:

Предлагается оптимизировать процессы оценки кредитных рисков на индивидуальном уровне с целью снижения уровня риска дефолта заемщика.

Современные программные средства позволяют осуществлять поддержку принятия решений сотрудниками Банка для повышения эффективности выполняемых задач и сведения к минимуму ошибок «человеческого фактора».

Ключевые слова: банк, кредит, риск, поддержка принятия решений

Abstract: It is proposed to optimize the processes of assessing credit risks at the individual level in order to reduce the risk of default of the borrower. Modern software tools allow you to support decision-making by Bank employees to increase the efficiency of the tasks performed and to minimize human factor errors.

Keywords: bank, credit, risk, decision support

Введение
В процессе своей активной деятельности банки сталкиваются с различного рода рисками. Неэффективное управление рисками в банковской деятельности может привести учреждение к банкротству, а в силу его положения в экономике, и к целому ряду банкротств, связанных с ним предприятий, банков и частных лиц.

Основным видом деятельности банка является кредитная, которая обеспечивает большую часть доходности всех активов, и, как правило, высокая доходность непосредственно сопровождается повышенным риском. С увеличением объемов кредитования актуализируются и задачи управления кредитным риском банка. В этой связи разработка методов оценки и механизма регулирования кредитного портфельного риска обеспечивает укрепление финансового положения банка.

Постановка задачи

Чтобы минимизировать возможные негативные последствия в дальнейшем, предлагается осуществлять процесс управления банковским кредитным риском на двух уровнях – индивидуальном и портфельном. Минимизация кредитного риска на индивидуальном уровне подразумевает оценку кредитоспособности отдельных заемщиков, а также определение минимальной требуемой доходности по каждой конкретной ссуде.

Модель оценки кредитоспособности заемщика:

Пусть потенциальный заемщик - юридическое лицо, характеризуется значениями финансовых показателей X_1, X_2, \ldots, X_N.

Требуется определить уровень риска дефолта заемщика.

Описание метода оценки уровня риска дефолта:
Формирование системы показателей для оценки является исходным и одновременно самым важным шагом, предопределяющим правильность конечных результатов.

Эксперту банка необходимо выбрать ряд отдельных финансовых показателей, о которых можно сказать, что они наилучшим образом характеризуют отдельные стороны деятельности предприятия и при этом образуют некую законченную совокупность, дающую исчерпывающее представление о предприятии как о целом. Значимость тех или иных показателей для оценки тех или иных предприятий различна, и поэтому перед экспертом встает трудная задача отбора и ранжирования факторов анализа.

Здесь и далее по умолчанию предполагаем, что рост отдельного показателя $X_i, i=1..N$ сопряжен со снижением степени риска банкротства и с улучшением самочувствия рассматриваемого предприятия. Если для данного показателя наблюдается противоположная тенденция, то в анализе его следует заменить сопряженным. Например, показатель доли заемных средств в активах предприятия разумно заменить показателем доли собственных средств в активах.

Пример системы показателей:

X_1 - коэффициент автономии (отношение собственного капитала к валюте баланса),

X_2 - коэффициент обеспеченности оборотных активов собственными средствами (отношение чистого оборотного капитала к оборотным активам),
\[X_3 \] - коэффициент промежуточной ликвидности (отношение суммы денежных средств и дебиторской задолженности к краткосрочным пассивам),

\[X_4 \] - коэффициент абсолютной ликвидности (отношение суммы денежных средств к краткосрочным пассивам),

\[X_5 \] - оборачиваемость всех активов в годовом исчислении (отношение выручки от реализации к средней за период стоимости активов),

\[X_6 \] - рентабельность всего капитала (отношение чистой прибыли к средней за период стоимости активов).

Предложенная система показателей не является универсальной. Например, предприятие, производящее морские суда, имеет длительный производственный цикл и поэтому долгое время может оставаться нерентабельным. Поэтому механическое применение фактора рентабельности в оценке может незаконно ухудшить оценку фактического положения компании.

Сопоставим каждому показателю \(X_i \) уровень его значимости для анализа \(r_i \). Чтобы оценить этот уровень, нужно расположить все показатели по порядку убывания значимости так, чтобы выполнялось правило:

\[r_1 \geq r_2 \geq ... \geq r_N. \]

Например, промышленное предприятие, прошедшее приватизацию и не приспособившееся к новым условиям хозяйствования, убыточно и нерентабельно. Однако оно располагает изрядным количеством неликвидного, морально устаревшего оборудования, а также производственными помещениями. Доля этого имущества в активах
компании высока, что свидетельствует о высоком уровне ее финансовой автономии. Но показатель автономии, измеренный по балансу, мало что дает с точки зрения оценки риска банкротства, так как собственное имущество предприятия, в силу его неликвидности, не может выступить средством погашения текущей задолженности, а также выступать средством залога при кредитовании. Следовательно, финансовый показатель автономии должен занимать в выбранной системе показателей, применительно к указанному предприятию, одно из последних мест.

Систему оценок значимостей целесообразно пронормировать следующим образом:

$$\sum_{i=1}^{N} r_i = 1.$$

Если система показателей проранжирована в порядке убывания их значимости, то значимость i-го показателя r_i следует определять по правилу Фишбера:

$$r_i = \frac{2(N - i + 1)}{(N + 1)N}.$$

Например, для системы с $N=3$ показателями $r_1=3/6$, $r_2=2/6$, $r_3=1/6$, и сумма уровней значимости равна единице.

Правило Фишбера отражает тот факт, что об уровне значимости показателей неизвестно ничего. Тогда оценка отвечает максиму энтропии наличной информационной неопределенности об объекте исследования.

Если же все показатели обладают равной значимостью (равно-предпочтительны или системы предпочтений нет), тогда:
\[r_i = 1/N. \]

Будем распознавать уровень показателя на качественном уровне, словесно. Для этого составим таблицу 1.

Таблица 1

Распознавание уровня показателей

<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Уровень показателя</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>очень низкий</td>
</tr>
<tr>
<td>(X_1)</td>
<td>(\lambda_{11})</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(X_i)</td>
<td>(\lambda_{i1})</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(X_N)</td>
<td>(\lambda_{N1})</td>
</tr>
</tbody>
</table>

В таблице 1 \(\lambda_{ij} \) равно 1, если эксперт именно таким образом распознал текущий уровень показателя, и 0 во всех остальных случаях. Правильное заполнение таблицы 5 дает, что сумма всех столбцов и строк таблицы равна \(N \). Таблица 1 представляет собой нечто вроде финансовой карты предприятия, на которой отмечены как успехи финансовой политики предприятия, так и его слабые звенья.

Распознавание уровня показателя – самый деликатный вопрос метода. Эта процедура проводится экспертом, с учетом его опыта. В качестве
подспорьё эксперт может использовать статистику работы достаточно большого количества аналогичных предприятий за один и тот же период времени. Исследуя её, эксперт может разработать классификацию уровней показателей. Пример классификации для отобранных показателей $X_1 - X_6$ приведён в таблице 2.

Таблица 2

Классификатор уровней финансовых показателей

<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Критерий разбиения по уровням:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>очень низкий</td>
</tr>
<tr>
<td>X_1</td>
<td>$x_1 < 0.15$</td>
</tr>
<tr>
<td>X_2</td>
<td>$x_2 < 0$</td>
</tr>
<tr>
<td>X_3</td>
<td>$x_3 < 0.55$</td>
</tr>
<tr>
<td>X_4</td>
<td>$x_4 < 0.025$</td>
</tr>
<tr>
<td>X_5</td>
<td>$x_5 < 0.1$</td>
</tr>
<tr>
<td>X_6</td>
<td>$x_6 < 0$</td>
</tr>
</tbody>
</table>
Расчет показателя уровня риска дефолта предприятия осуществляется с помощью двойной свертки данных:

$$PD = 1 - \sum_{j=1}^{\xi} g_j \sum_{i=1}^{N} r_i \lambda_y,$$

где

$$g_1=0,1, g_2=0,3, g_3=0,5, g_4=0,7, g_5=0,9,$$

Таким образом, в ходе свертки используются две системы весовых коэффициентов – значимости показателей и опорные веса для сведения нескольких отдельных показателей в один.

По построению, чем ближе значение показателя PD к 1, тем хуже обстоит дело с финансами предприятия и тем ближе оно к дефолту.

Следующим этапом управления кредитным риском на индивидуальном уровне является оценка размера потерь по ссуде в случае дефолта заемщика. Данную величину принято обозначать LGD (Loss Given Default) и выражать в виде процентной доли от общей суммы предоставленной заемщику ссуды. В соответствии с рекомендациями Базельского комитета величина LGD должна определяться индивидуально для каждого заемщика в зависимости от рыночной стоимости залога и другого обеспечения по ссуде. Как указано в исследовании, показатель LGD по обеспеченным ссудам за период времени 1970-2003гг. составил 45,74%, а по необеспеченным ссудам – 85,61%. Данное исследование проводилось среди заемщиков, имеющих кредитных рейтинг рейтингового агентства Moody’s.

Оценка вероятности дефолта (PD), а также величины потерь по ссуде в результате дефолта (LGD), позволяют определить цену ссуды и
минимальную доходность по ссуде. Применительно к облигациям, являющимся долговыми ценными бумагами, данный показатель известен как доходность к погашению и находится по формуле:

$$P_i = \sum_{t=1}^{T} \frac{CF_i}{(1 + y_i)^t}$$

где \(P_i \) – цена облигации \(i \);

\(CF_i \) – поток платежей по облигации \(i \) в момент времени \(t \), включая основную сумму долга;

\(y_i \) – доходность к погашению облигации \(i \);

\(T \) – срок погашения облигации.

Наибольшую сложность при определении минимальной доходности ссуды составляет тот факт, что в отличие от рыночных долговых ценных бумаг (облигаций) специалистам банка не доступна реальная цена ссуды \(P_i \). Тем не менее, стоимость ссуды может быть найдена на основе аналитического выражения как текущая дисконтированная стоимость потока платежей по ссуде с учетом вероятности дефолта (PD) и размера потерь в случае дефолта (LGD). Например, если объем платежа по ссуде \(i \) со сроком погашения 1 год составляет \(V_i \) денежных единиц, то текущая дисконтированная стоимость по ссуде находится по формуле дисконтированного математического ожидания:

$$P_i = \frac{PD_i(1-LGD) + (1-PD_i)}{1+r_f}.V_i$$

где \(r_f \) – безрисковая процентная ставка.
Тогда минимальная доходность \((y_i) \) по ссуде \(i \) находится из выражения:

\[
V_i = \frac{PD_i(1 - LGD) + (1 - PD_i)}{1 + r_f}. V_i = \frac{V_i}{(1 + y_i)} \Rightarrow (1 + y_i) = \frac{(1 + r_f)}{PD_i(1 - LGD) + (1 - PD_i)}
\]

(2.11)

Данное выражение гарантирует выполнение условия \(y_i \geq r_f \), означающего, что доходность рискового актива должна быть больше безрисковой процентной ставки. При этом доходность по ссуде совпадает с безрисковой процентной ставкой лишь в случае отсутствия риска дефолта

\((PD_i = 0 \Rightarrow y_i = r_f). \)

Выбор инструментального средства проектирования

Для решения оптимизационных задач разработано немало различных программ. В данной работе в качестве инструментального средства проектирования (пакета прикладных программ) был выбран продукт Excel. Программа Microsoft Excel – входит в пакет программ Microsoft Office и предназначена для создания электронных таблиц, вычислений в них и создания диаграмм. Как и в программе Microsoft Word в программе Excel можно создавать обычные текстовые документы, бланки, прайс-листы, проводить сортировку, отбор и группировку данных, анализировать и т.п.

Заключение

Разработанный механизм минимизации кредитного риска банка позволит повысить эффективность кредитных операций и деятельности банка в целом. Данный механизм представляет собой совокупность методов
и моделей, направленных на повышение качества кредитного портфеля и снижение уровня совокупного кредитного риска банка.

Для управления риском на индивидуальном уровне предложена методика оценки кредитоспособности потенциальных заемщиков с использованием элементов нечеткой математики, основанная на построении показателя уровня риска дефолта предприятия, позволяющая диагностировать неблагополучное финансовое состояние заемщика. Данный подход позволяет эксперту при проведении оценки наилучшим образом формализовать свои представления, трансформировав язык слов в язык количественных оценок.

Список использованной литературы:

